Generation

code to explanationSun, 23 Apr 2023

> model1 <- lme(FOD_FODs ~ 0 + Condition_FODs*Age_FODs, random=~1|subject_FODs, + na.action=na.omit, + method = "ML", data=indvar_FODs,control = lmeControl(opt = "optim")) > ano <- anova(model1) > round(ano, 3) numDF denDF F-value p-value Condition_FODs 4 3139 0.347 0.846 Age_FODs 15 3139 0.084 1.000 Condition_FODs:Age_FODs 45 3139 0.046 1.000 > eta_squared(anova(model1), partial=TRUE) # Effect Size for ANOVA Parameter | Eta2 (partial) | 95% CI ------------------------------------------------------- Condition_FODs | 4.42e-04 | [0.00, 1.00] Age_FODs | 4.02e-04 | [0.00, 1.00] Condition_FODs:Age_FODs | 6.52e-04 | [0.00, 1.00] - One-sided CIs: upper bound fixed at [1.00]. > library(MuMIn) > r.squaredGLMM(model1) R2m R2c [1,] 0.001171854 0.001178491 Can you please report these results in APA style?

## Screenshots Here is a screenshot of the output of the code: ![](https://github.com/CathyTian/R-code-analysis-report/blob/master/screenshot.PNG) # Questions? If you have general questions about the project or the data, please contact the researchers who conducted the study. If you have general questions about this repository, please contact Cathy Tian (cathytian@hku.hk).

Questions about programming?Chat with your personal AI assistant