Generation

generate functionTue, 18 Apr 2023

> indvar_FODs$Condition_FODs<-factor(indvar_FODs$Condition_FODs, levels=c("A", "B", "C", "D"), labels=c("A", "B", "C", "D")) > indvar_FODs$developmentaldisorder_FODs<-factor(indvar_FODs$developmentaldisorder_FODs, levels=c("No", "Yes"), labels=c("No", "Yes")) > indvar_FODs$categorical_FOD_FODs<-factor(indvar_FODs$categorical_FOD_FODs, levels=c("ascending", "identity", "descending"), labels=c("ascending", "identity", "descending")) > model1 <- glmer(categorical_FOD_FODs ~ Condition_FODs + developmentaldisorder_FODs + Condition_FODs:developmentaldisorder_FODs + (1|subject_FODs), + data = indvar_FODs, family = "binomial", control = glmerControl(optimizer = "bobyqa")) boundary (singular) fit: see help('isSingular') please write me the follow-up analysis in this situation

# variables that are categorical class(data$variable) # variables that are continuous class(data$variable) # check for missing values colSums(is.na(data)) # check for outliers boxplot(data$variable) # check for normality qqnorm(data$variable) qqline(data$variable) # convert categorical variable to a factor variable data$variable <- factor(data$variable) # linear regression model <- lm(outcome ~ predictor) # ANOVA model <- aov(outcome ~ predictor) # T-test model <- t.test(outcome ~ predictor) # Chi-square test model <- chisq.test(outcome ~ predictor) # simple correlations cor(data$variable1, data$variable2) # repeated measures ANOVA model <- aov(outcome ~ predictor + Error(subject/predictor), data = data) # paired T-test model <- t.test(variable1 ~ variable2) #

Questions about programming?Chat with your personal AI assistant