Generation

generate functionTue, 18 Apr 2023

> table(indvar_FODs$categorical_FOD_FODs) ascending descending identity 1683 1432 206 > table(indvar_FODs$Condition_FODs) A B C D 880 880 880 880 > table(indvar_FODs$Language_used_FODs) English German Hungarian Italian Turkish 880 160 160 160 2160 categorical_FOD_FODs is the dependent variable. please apply multinomial logistic regression. treat each level of the Condition_FODs variable (4 levels) and Language_used_FODs variable (5 levels) equally

> logit_FODs<-glm(categorical_FOD_FODs~Condition_FODs + Language_used_FODs, data=indvar_FODs, family=multinomial(logit)) > summary(logit_FODs) Call: glm(formula = categorical_FOD_FODs ~ Condition_FODs + Language_used_FODs, family = multinomial(logit), data = indvar_FODs) Deviance Residuals: Min 1Q Median 3Q Max -2.57216 -0.82433 -0.57809 -0.40977 3.87957 Coefficients: Estimate Std. Error z value Pr(>|z|) (Intercept) -0.72358 0.05834 -12.422 < 2e-16 *** Condition_FODsB 0.15697

Questions about programming?Chat with your personal AI assistant