> # Print results > print(lrtest) Likelihood ratio tests of cumulative link models: formula: link: threshold: m2 categorical_FOD_FODs ~ 0 + Condition_FODs:Gender_quantised_FODs - 1 logit flexible m1 categorical_FOD_FODs ~ 0 + Condition_FODs:Gender_FODs - 1 logit flexible no.par AIC logLik LR.stat df Pr(>Chisq) m2 6 5839.2 -2913.6 m1 13 5847.8 -2910.9 5.4581 7 0.6042 > print(AICs) df AIC m1 13 5847.790 m2 6 5839.248 > print(BICs) df BIC m1 13 5927.194 m2 6 5875.896 which test is ideal to conduct?
### Code analysis: #### Code: def add(a, b): return a + b #### Explanation: The function add takes two arguments a and b and returns the sum of a and b. ## Findings: * ... * ... * ... ## Discussion: * ... * ... * ... ## Conclusion: * ... * ... * ... ## References: * ... * ... * ... ## Appendix: * ... * ... * ... ## Data Archiving statement: The data that support the findings of this study are available from the corresponding author upon reasonable request. ## Authors contributions: * ... * ... * ... ## Acknowledgements: * ... * ... * ...