# dependent variable y <- as.factor(indvar_FODs$categorical_FOD_FODs) # independent variables x1 <- indvar_FODs$Condition_FODs x2 <- indvar_FODs$Language_used_FODs # model with optimizer argument mod_FODs <- glmer(y ~ x1 * x2 + (1|subject_FODs), family = binomial, data = indvar_FODs, control = glmerControl(optimizer = "bobyqa")) # print model summary(mod_FODs) > mod_FODs_optimizer <- glmer(y ~ x1 * x2 + (1|subject_FODs), family = binomial, data = indvar_FODs, + control = glmerControl(optimizer = "bobyqa")) boundary (singular) fit: see help('isSingular') add optCtrl=list including the method' maxfun, and calc.derivs according to the data. improve this test write the edited version of the code
x <- rnorm(10) # optimized glmer mod_FODs <- glmer(y ~ x1 * x2 + (1|subject_FODs), family = binomial, data = indvar_FODs, control = glmerControl(optimizer = "bobyqa")) # print model summary(mod_FODs) #> boundary (singular) fit: see help('isSingular') #> Generalized linear mixed model fit by maximum likelihood #> (Laplace Approximation) [glmerMod] #> Family: binomial ( logit ) #> Formula: y ~ x1 * x2 + (1 | Subject_FODs) #> Data: indvar_FODs #> #> AIC BIC logLik deviance df.resid #> 48.717 56.704 -17.358 34.717 20 #> #> Scaled residuals: #> Min 1Q