Generation

generate functionThu, 20 Apr 2023

> chisq.test(table(indvar_FODs$Gender_FODs, indvar_FODs$categorical_FOD_FODs)) Pearson's Chi-squared test data: table(indvar_FODs$Gender_FODs, indvar_FODs$categorical_FOD_FODs) X-squared = 1.1716, df = 4, p-value = 0.8828 > chisq.test(table(indvar_FODs$Condition_FODs, indvar_FODs$categorical_FOD_FODs)) Pearson's Chi-squared test data: table(indvar_FODs$Condition_FODs, indvar_FODs$categorical_FOD_FODs) X-squared = 105.87, df = 6, p-value < 2.2e-16 analyse the interaction effect between the Condition_FODs and Gender_FODs on the categorical_FOD_FODs

#install.packages("multcomp") library("multcomp") categorical_FOD_FODs_analysis <- glht(model_categorical_FOD_FODs, linfct = mcp(Condition_FODs = "Tukey", Gender_FODs = "Tukey")) summary(categorical_FOD_FODs_analysis)

Questions about programming?Chat with your personal AI assistant