Generation

generate functionTue, 18 Apr 2023

> table(indvar_FODs$categorical_FOD_FODs) ascending descending identity 1683 1432 206 > table(indvar_FODs$Condition_FODs) A B C D 880 880 880 880 > table(indvar_FODs$Language_used_FODs) English German Hungarian Italian Turkish 880 160 160 160 2160 categorical_FOD_FODs is the dependent variable. how can I apply multinomial logistic regression with interaction effect Treat each level of the Condition_FODs variable (4 levels) and Language_used_FODs variable (5 levels) equally. include the interaction effect of variables in the analysis.

library(car) library(nnet) library(MASS) set.seed(123) n = length(indvar_FODs$Condition_FODs) FODs.train <- sample(1:n, 0.7*n) FODs.test <- setdiff(1:n, FODs.train) train.features <- model.matrix(categorical_FOD_FODs ~ -1 + Condition_FODs * Language_used_FODs, data=indvar_FODs) test.features <- model.matrix(categorical_FOD_FODs ~ -1 + Condition_FODs * Language_used_FODs, data=indvar_FODs)[FODs.test,] FODs.pred.1 <- multinom(categorical_FOD_FODs ~ Condition_FODs + Language_used_FODs, data=indvar_FODs[FODs.train,]) FODs.pred.

Questions about programming?Chat with your personal AI assistant