Generation

generate functionTue, 18 Apr 2023

> table(indvar_FODs$categorical_FOD_FODs) ascending descending identity 1683 1432 206 > table(indvar_FODs$Condition_FODs) A B C D 880 880 880 880 > table(indvar_FODs$Language_used_FODs) English German Hungarian Italian Turkish 880 160 160 160 2160 categorical_FOD_FODs is the dependent variable. how can I apply multinomial logistic regression with interaction effect Treat each level of the Condition_FODs variable (4 levels) and Language_used_FODs variable (5 levels) equally. include the interaction effect of variables in the analysis.

> glm(categorical_FOD_FODs ~ Condition_FODs + Language_used_FODs + Condition_FODs:Language_used_FODs, data=indvar_FODs, family=multinomial(link="logit")) Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred Call: glm(formula = categorical_FOD_FODs ~ Condition_FODs + Language_used_FODs + Condition_FODs:Language_used_FODs, family = multinomial(link = "logit"), data = indvar_FODs) Coefficients: (Intercept) ascending -0.002 descending 1.511 identity 3.368 Condition_FODsB 0.079 Condition_FODsC 0.243 Condition_FODsD

Questions about programming?Chat with your personal AI assistant