The code below gives an error TypeError: unhashable type: 'list'. Fix it from gensim import similarities cos_sim = similarities.MatrixSimilarity(tfidf[bows])
def tokenize(text): return tokens_re.findall(text) def preprocess(text): tokens = tokenize(text) tokens = [token for token in tokens if not token in stop_words] tokens = [wordnet_lemmatizer.lemmatize(token) for token in tokens] return tokens