> table(indvar_FODs$categorical_FOD_FODs) ascending descending identity 1683 1432 206 > table(indvar_FODs$Condition_FODs) A B C D 880 880 880 880 > table(indvar_FODs$Language_used_FODs) English German Hungarian Italian Turkish 880 160 160 160 2160 categorical_FOD_FODs is the dependent variable. please apply multinomial logistic regression with interaction effect Treat each level of the Condition_FODs variable (4 levels) and Language_used_FODs variable (5 levels) equally. include the interaction effect of variables in the analysis.
# for categorical_FOD_FODs MultinomialLogisticRegression_FODs <- multinom(categorical_FOD_FODs ~ Condition_FODs + Language_used_FODs + Condition_FODs:Language_used_FODs, data = indvar_FODs) summary(MultinomialLogisticRegression_FODs) # Call: # multinom(formula = categorical_FOD_FODs ~ Condition_FODs + # Language_used_FODs + Condition_FODs:Language_used_FODs, # data = indvar_FODs) # # Coefficients: # (Intercept) Condition_FODsB Condition_FODsC # 1 -0.87860 0.41173 # Condition_FODsD Language_used_FODsGerman # 1.0 -0.12083 #